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Elementary proofs of the first and second Griffiths-Kelly-Sherman (GKS) 
inequalities are given for higher-spin Ising systems with a Hamiltonian 
containing only a quadratic form in the spin variables and integer powers of 
single spin variables. These proofs are obtained using Gaussian random 
variables. A slight generalization of previous results has been obtained in 
that the coefficients of the even powers of the spin variables are allowed to 
be negative. 

KEY W O R D S  : Ising spin systems ; Griffiths, Kelly, Sherman inequalities ; 
Gaussian random variables. 

1. I N T R O D U C T I O N  

F o r  a s y s t e m  o f  N I s ing  sp ins  a t t a c h e d  to  p o i n t s  o f  a la t t ice  f2, t he  G r i f f i t h s -  

K e l l y - S h e r m a n  ( G K S )  inequa l i t i e s  (~) s t a t e  t h a t  

a n d  
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where cry, crj, ~ = + 1 are Ising spin variables associated with the points i, j, 
and k of  f2, and A, B, and C are subsets of f2. The bracket < > denotes the 
average in the canonical ensemble 2 with Hamiltonian 

. = - 1 ;  IA I - I  (3) 
A=~I i~A 

where JA is required to be nonnegative for all A = g). These inequalities have 
been generalized to the case of systems having spin variables s~, where 
s, = p, p - 2,..., - p  + 2, - p ,  and to products of spin variables 

N 

s 6 - ~ (s,) ~' (4) 
i = l  

where 8, is a multiplicity function assigning to each site i e f~ a nonnegative 
integer. The inequalities then become 

<s~> >i o (5) 
and 

<s6sV> - <s6><s'> >/ 0 (6) 

for systems with the general Hamiltonian 

H = - ~ J.s" (7) 

with the restriction Ju >1 0 for all iz. (z) 
We present here a rather simple proof  of the inequalities (5) and (6), 

using the method of random variables, for the case of the higher-spin systems 
with Hamiltonian 

N N 

H = - � 8 9  j - ~ hra ~ (s~) m - ~ I~n ~ (Si) n ( 8 )  

~ 5 o~d i = I even i = i 

where m and n are, respectively, odd and even positive integers, J(i,  j )  >1 0 
for all (i, j ) ,  hm >1 0 for all rn, and J ( j ,  i) = J(i ,  j ) .  The Hamiltonian (8) is 
more restricted than (7), for which (5) and (6) are valid in that the method of 
random fields restricts us to the pair interaction. However, while previous 
proofs of the inequalities have relied on first proving them for a spin-�89 
system and then, by use of Griffith's weight functions, (2) expressing the 
higher-spin systems in terms of spin-�89 systems, the following method deals 
directly with the higher-spin systems. (The case of s~ = _+ 1 is presented 
separately in the following sections before the general spin case only for the 
purpose of first illustrating the proofs with a minimum of computational 
difficulties.) Also, in the previous proofs of the inequalities a necessary re- 

2 To be distinguished from the average < >Aw to be introduced later. 
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quirement was that all interaction coefficients be nonnegative. Here this 
restriction on the factors ~. is dropped and these interactions can take on any 
value. 

The method of random fields has been used by several authors <3~ for 
the investigation of the neighborhood of the Weiss limit. It is based on the 
identity (~> 

_-_ (2rr)-m2(det c~) -1/2 

x f . . . f  ~exp[ - � 89  ~ Xk(O~-l)kzXz+ ~, fjXs] } ~ I  dx~ (9) 

valid for any symmetric, real, and positive-definite matrix c~, and for any N 
complex variables ~:k. The sign of (det c 0 -  l/z is to be chosen positive. The 
right-hand side of Eq. (9) can be considered as the average (exp ~ =  1 xfj)A~,, 
where ( )a~, denotes the average with respect to the probability density 

WN(x) = (2zr)-m2(det ~)-~'2 exp[--�89 ~ xe(~-~)~,x~] (10) 
~,I=1 

where x is the vector with components x s. 
One derives from this easily the averages 

( 1 - ~  ~ ( 0 ~ n  for n o d d  
x,j = ~ aa for n even (11) 

# = I V~ I G a  g s  

where the numbers lj are positive integers less than N, not necessarily distinct, 
and st are pairs of numbers/3.. The sum ~pa~g~ extends over all the different 
ways of dividing the numbers lj into different pairs (st and ts are considered 
the same pair). For example, (xlx2) = ~2, (x~x22x4) = 2c~12'~2~ + cq~22, 
and (x~x2xsx4) = a~2~a4 + a~aa24 + a~4a2s. Clearly if all elements of c~ are 
nonnegative, then 

x~rJ i> 0 (12) 

where all nj are nonnegative integers2 
The identity (9) can be used to rewrite the Boltzmann factor e -BH, by 

identifying the variable ~:s with the spin variables sj and forming a matrix 
J = a with off-diagonal elements J(i, j) and all diagonal elements equal to a 
number Jo =- J(i, i) large enough to guarantee that J is positive definite. The 

3 Left(5) used this fact to prove GKS-type inequalities for oscillator coordinates. 
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Boltzmann factor with the Hamiltonian (8) and fl = 1/kT is then 

exp " f i l l  = exp fi~'2xks ~ + fl ~, hm(sk) m + fl ~, I~,(Sk) ~ 
1 O~d ev%n 

- � 8 9  (13) 

Here we only assumed. J to be positive definite and J(i, j)  real and 
symmetric, J(i, j)  = J(j, i). Also, the dimensionality of the lattice f2 does 
not enter; in fact, f2 need not be a regular lattice, but any set of N points. 

2. T H E  F IRST GKS I N E Q U A L I T Y  

The following restricted theorem for the spin-�89 case is proven before 
the general theorem which follows. 

Theorem 1'. For  the case when st = + 1, J(i , j)  >>. O, and hi >I 0 the 
following inequality is valid: <s~> /> 0. 

Proof. For  the case of s~ = + 1 the terms /z, and hm with m > 1 are 
irrelevant. Therefore for the thermal average (st> one has from (8) and (13) 

ZN< s~) = ( 2~r) - m2(det J) - ll2[exp(-�89 NJofl) ] 

x ~ f . . . f  dnx e x p ( - � 8 9  ~xk(J-~)~txz] 

x [0/~(fl~/2x~)] exp fl1/2 xesk + flh sk (14) 

After the sum over configurations {s} is carried out this becomes 

ZN<s~) = (2~r exp flJo)-m2(det J)-1,2 f ' " . f  dnx 

• [0/0(/31/2x~1] I--[ 2 cosh(/31[Zx k +/3h) (15) 
k = l  

It remains to show that the right-hand side of (15) is nonnegative. By taking 
the series expansion of  the cosh terms and performing the partial differentia- 
tion, it is seen that the expression in the curly brackets becomes a summation 

(Zl ~z2 ~N of  terms of  the form C(al,  a2 ..... an)x1 x2 ...Xn , where the a's are non- 
negative integers and C(al ,  a2 ..... an) is a nonnegative constant given that 
hi /> 0. Therefore the r.h.s, of  (15) is a sum of terms of the above form 
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averaged with respect to the probability density (10), with c~ replaced by o r. 
By (12) one has that the average of Xl~lX2~2--.XN~N with respect to the proba- 
bility density (10) is nonnegative given J(i, k) >1 0 for all (i,j). Hence the 
r.h.s, of (15) is a sum of positive terms and the theorem is proven. 

The general theorem follows: 

T h e o r e m  1. Given the Ising system of Section 1 with Hamiltonian (8), 
the following inequality holds 

(s ~ >1 0 (16) 

whenever J(i, j) >i 0 for all (i, j )  and hm i> 0 for all in. 

Proof .  Calculation of the thermal average of s o using (8) and (13) after 
performing the summation over {st} gives 

Zu(s~ = (2~)-~'2(detJ)-~/2 f...f dNx exp(-�89 ~ xk(J-1)kzxz] 

• 1-~ [~176 ~ ~,.o 

q- e~> ~ 2{exp (fl ~/zn(&)n]} cosh[flz'2x, s,-bfi ~m hm(s~)m]} 

(17) 

where the term Jo has been included in the/z2 term and the 8~.0 is the usual 
Kronecker delta. It should be noted that the cosh terms appear because of the 
fact that if s, = +q, there is also the term s, = - q  except for the case s~ = 0, 
which gives rise to the 8~,o- The proof now follows as before: After expansion 
of the cosh terms and differentiation, the right-hand side of (17) becomes a 

g l  ~r t~N sum of terms of the form C(al,  a2 ..... c~N)x~ xz ...x~ , where C is a positive 
constant, averaged with respect to the probability density (10) and hence 
positive. 

3. T H E  S E C O N D  G K S  I N E Q U A L I T Y  

The second GKS inequalities are now proven beginning with the simplest 
inequality for the spin-�89 system. 

T h e o r e m  2'.  For the case where s~ = + 1, J( i , j )  >~ O, and hz /> 0 the 
following inequality holds: (s~sj) - (s~)(sj) >- O. 

Proof. As in Theorem 1' for the case of s~ = _+ 1 the terms/~, and hm 
with m > 1 are redundant. Therefore for the above inequality one has 
from (8) and (13) 
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zN~[(s~sj) - (s,)(sj)] 

= (27r)-N(det J)- l[exp (-- NJoS)l ~ ~,~ f " f  dNx dNy 

x exp[--�89189 

x ~( /3~2x , ) [o~x j  ) ~ ( ~ y , ) ]  

(2 } x exp [fllJZ(skx~ + s~'yk) + flh(s~ + sk')] (18) 

Defining new variables 

"% = (1/'V'2)(xk + y~), ~:k = (1/'V~)(xk -- Yk) (19) 

one can rewrite (18) as 

z~[(s~sj) - (sb(sj)] 

= (2~)-U(detJ)-~[exp(-NJoB)] Z ~ f " ' f  d'%d"r 
ts} (s ' )  

x exp[-�89 k~z ~Tk(J- ~)kffh] exp[--�89 ~ ~:k(J-~)k~z] 

X exp [fl~/2(SkXk + sk'y~) + flh(sk + S~')] (20) 

Performing the summation over {s} and {s'} gives 

z~?[(asj) - (s,)(s,)l 

= (2rr)- N(det J)-~[exp(- NJo/3)] [ . . .f  dN~7 

x exp[-  �89 ~ 7/e(J- 1)k,~7,] exp[-  �89 k~ ~k(J- ~)k,f,] 

• + 

N 

x ~ [2 cosh[(2fi)~2~ + 2fin] + 2[cosh(2fl)~z~:~] (21) 
k = l  

As with the case of the first GKS inequality, the right-hand side, after expand- 
ing the cosh terms and taking the partial derivatives, is a sum of terms of the 
form 

t / gl OrN ~1' ~N' C(~,~ ..... ,~N, ,~ ..... ,~, ) ~  ...~,, ~:~ ...~:N 
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with the constant C positive for hm > 0. The ,/'s and ~:'s are averaged with 
respect to their respective Gaussian averages and again as in Theorem 1 these 
averages are positive. Hence the positivity of the right-hand side of (21) and 
the theorem is proven. 

The general theorem for the second GKS inequality follows: 

Theorem 2. Given the Ising spin system of Section 1 with Hamiltonian 
(8), the following inequality holds: 

<ses ~) - <sO)<s ~) >1 0 (22) 

whenever J(i, j) >1 0 for all (i, j )  and hm t> 0 for all m. 

Proof. Using the new variables ~:k and ~k of (19), one has 

Z~[<s+s ~> - (s+>(s?] 

= (2~)-N(detJ)-l z z f . . . f  dNe dN, 
{s) (s') 

,,,=~/.[(2/3)~/2J ~ + 0~,] L ~ J  

[ ( 8  _._~_8 '~ v, ( 0  8__.~V, lexp[fll,Z(s,x,+s,y, ) • ~ + a 6 . ]  - #~ a~;] j 

q- fl ~ hm((si)m -f - (s/) m) -f- fl ~ IZn((S,)n -I - (S/)n)] } " (23) 
o~d ev%n 

AJ 

The remainder of the proof consists in rearrangement of the derivative terms 
and those terms involving s~ and s / t o  obtain the right-hand side of (23) as a 
sum of positive terms. First the negative terms of the derivatives cancel and 
give 

odd (24) 

The terms containing s+ and s / can  be written as 

exp~/3'i2(sx + s ' y )+  fl ~ hm[(S) m dr-(S') m] -t- fl ~ [/'n [(S) n-'t- (s')n]} 
~'~" " o~h ov% 

: +h l (+ ,+>' , . (+  + +'>+ + ,+ + 
s,s, L m / 

x cosh[(�89 exp{fl ~n l~n[(S)n"~ (s')n]} (25) 
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Therefore, as in the previous proofs, by using the series expansion of the cosh 
terms, if hm >/ 0 for all m, then the right-hand side of (23) is a sum of terms of 
the form 

C(~i ..... aN, ~i', .... ~N')~?...~"~'...~ ~' 

with C(...) i> 0. The products of the variables ~ and ~7, averaged with 
respect to Gaussian probability densities in ~7 and ~, are positive ifJ(i,j) >i 0 
for all (i, j) .  

4. S U M M A R Y  

Elementary proofs of the first and second GKS inequalities are presented 
for Ising models with the Hamiltonian 

N N 
H({s}) = - � 89  ~ J(i,j)s~sj- ~ hm ~ (s~) m -  ~ tz~ ~ (s,) ~ (26) 

i=~j o~d i=1 evenn ~ 1  

where s ~ = p ,  p - 2 , . . . , - p  + 2, - p ,  J(i, j )  >~ 0 for all pairs (i,j), and 
h,~ >1 0 for all m.4 No positivity assumptions are needed for the factors/z~. The 
proofs use the representation of the Boltzmann factor as an average over 
Gaussian random variables. 
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